Механические свойства металлов. Механические свойства Испытания на предел прочности металла

Металлам присущи высокая пластичность, тепло- и электропро­водность. Они имеют характерный металлический блеск.

Свойствами металлов обладают около 80 элементов периодиче­ской системы Д.И. Менделеева. Для металлов, а также для метал­лических сплавов, особенно конструкционных, большое значение имеют механические свойства, основными из которых являются прочность, пластичность, твердость и ударная вязкость.

Под действием внешней нагрузки в твердом теле возникают на­пряжение и деформация. отнесенная к первоначальной площади поперечного сече­ния образца.

Деформация – это изменение формы и размеров твердого тела под действием внешних сил или в результате физических процессов, возникающих в теле при фазовых превращениях, усадке и т.п. Де­формация может быть упругая (исчезает после снятия нагрузки) и пластическая (сохраняется после снятия нагрузки). При все возрас­тающей нагрузке упругая деформация, как правило, переходит в пла­стическую, и далее образец разрушается.

В зависимости от способа приложения нагрузки методы испытания механических свойств ме­таллов, сплавов и других материалов делятся на статические, динамические и знакопеременные.

Прочность – способность металлов оказывать сопротивление де­формации или разрушению статическим, динамическим или знако­переменным нагрузкам. Прочность металлов при статических нагрузках испытывают на растяжение, сжатие, изгиб и кручение. Испытание на разрыв является обязательным. Прочность при динамических нагрузках оценивают удельной ударной вязкостью, а при знакопеременных нагрузках – усталостной прочностью.

Для определения прочности, упругости и пластичности металлы в виде образцов круглой или плоской формы испытывают на статическое растяжение. Испытания проводят на разрывных машинах. В результате испытаний получают диаграмму растяжения (рис. 3.1). По оси абсцисс этой диаграммы откладывают значения деформации, а по оси ординат – значения напряжения, приложенного к образцу.

Из графика видно, что сколь бы ни было мало приложенное напряжение, оно вызывает деформацию, причем начальные деформации являются всегда упругими и величина их находится в прямой зависимости от напряжения. На кривой, приведенной на диаграмме (рис. 3.1), упругая деформация характеризуется линией ОА и ее продолжением.

Рис. 3.1. Кривая деформации

Выше точки А нарушается пропорциональность между напряжением и деформацией. Напряжение вызывает уже не только упругую, но и остаточную, пластическую деформацию. Величина ее равна горизонтальному отрезку от штриховой линии до сплошной кривой.

При упругом деформировании под действием внешней силы изменяется расстояние между атомами в кристаллической решетке. Снятие нагрузки устраняет причину, вызвавшую изменение межатомного расстояния, атомы становятся на прежние места и деформация исчезает.

Пластическое деформирование представляет собой совершенно другой, значительно более сложный процесс. При пластическом деформировании одна часть кристалла перемещается по отношению к другой. Если нагрузку снять, то перемещенная часть кристалла не возвратится на старое место; деформация сохранится. Эти сдвиги обнаруживаются при микроструктурном исследовании. Кроме того, пластическое деформирование сопровождается дроблением блоков мозаики внутри зерен, а при значительных степенях деформации наблюдается также заметное изменение форм зерен и их расположения в пространстве, причем между зернами (иногда и внутри зерен) возникают пустоты (поры).

Представленная зависимость ОАВ (см. рис. 3.1) между приложенным извне напряжением (σ ) и вызванной им относительной деформацией (ε ) характеризует механические свойства металлов.

· наклон прямой ОА показывает жесткость металла , или характеристику того, как нагрузка, приложенная извне, изменяет межатомные расстояния, что в первом приближении характеризует силы межатомного притяжения;

· тангенс угла наклона прямой ОА пропорционален модулю упругости (Е ), который численно равен частному от деления напряжения на относительную упругую деформацию:

· напряжение, которое называется пределом пропорциональности (σ пц), соответствует моменту появления пластической деформации. Чем точнее метод измерения деформации, тем ниже лежит точка А ;

· в технических измерениях принята характеристика, именуемая пределом текучести (σ 0,2). Это напряжение, вызывающее остаточную деформацию, равную 0,2 % от длины или другого размера образца, изделия;

· максимальное напряжение (σ в) соответствует максимальному напряжению, достигнутому при растяжении, и называется временным сопротивлением или пределом прочности .

Еще одной характеристикой материала является величина пластической деформации, предшествующая разрушению и определяемая как относительное изменение длины (или поперечного сечения) – так называемое относительное удлинение (δ ) или относительное сужение (ψ ), они характеризуют пластичность металла. Площадь под кривой ОАВ пропорциональна работе, которую надо затратить, чтобы разрушить металл. Этот показатель, определяемый различными способами (главным образом путем удара по надрезанному образцу), характеризует вязкость металла.

При растяжении образца до разрушения фиксируются графически (рис. 3.2) зависимости между приложенным усилием и удлинением образца, в результате этого получают так называемые диаграммы деформации.

Рис. 3.2. Диаграмма «усилие (напряжение) – удлинение»

Деформация образца при нагружении сплава сначала является макроупругой, а затем постепенно и в разных зернах при неодинаковой нагрузке переходит в пластическую, происходящую путем сдвигов по дислокационному механизму. Накопление дислокаций в результате деформации ведет к упрочнению металла, но при значительной их плотности, особенно в отдельных участках, возникают очаги разрушения, приводящие, в конечном счете, к полному разрушению образца в целом.

Прочность при испытании на растяжение оценивают следующими характеристиками:

1) пределом прочности на разрыв;

2) пределом пропорциональности;

3) пределом текучести;

4) пределом упругости;

5) модулем упругости;

6) пределом текучести;

7) относительным удлинением;

8) относительным равномерным удлинением;

9) относительным сужением после разрыва.

Предел прочности на разрыв (предел прочности или временное сопротивление разрыву) σ в, – это напряжение, отвечающее наибольшей нагрузке Р В предшествующей разрушению образца:

σ в = Р в /F 0 ,

Эта характеристика является обязательной для металлов.

Предел пропорциональности (σ пц) – это условное напряжение Р пц, при котором начинается отклонение от пропорциональной зависимости мости между деформацией и нагрузкой. Он равен:

σ пц = Р пц /F 0 .

Значения σ пц измеряют в кгс/мм 2 или в МПа.

Предел текучести (σ т) – это напряжение (Р т) при котором обра­зец деформируется (течет) без заметного увеличения нагрузки. Вычисляется по формуле:

σ т = Р т /F 0 .

Предел упругости (σ 0,05) – напряжение, при котором остаточное удлинение достигает 0,05 % длины участка рабочей части образца, равного базе тензометра. Предел упругости σ 0,05 вычисляют по формуле:

σ 0,05 = Р 0,05 /F 0 .

Модуль упругости (Е )отношение приращения напряжения к соответствующему приращению удлинения в пределах упругой деформации. Он равен:

Е = Рl 0 / l ср F 0 ,

где ∆Р – приращение нагрузки; l 0 – начальная расчетная длина образца; l ср – среднее приращение удлинения; F 0 начальная площадь поперечного сечения.

Предел текучести (условный ) – напряжение при котором остаточное удлинение достигает 0,2 % длины участка образца на его рабочей части, удлинение которого принимается в расчет при определении указанной характеристики.


Вычисляется по формуле:

σ 0,2 = Р 0,2 /F 0 .

Условный предел текучести определяют только при отсутствии на диаграмме растяжения площадки текучести.

Относительное удлинение (после разрыва ) – одна из характеристик пластичности материалов, равная отношению приращения расчетной длины образца после разрушения (l к ) к начальной расчетной длине (l 0 ) в процентах:

Относительное равномерное удлинение (δ р) – отношение приращения длины участков в рабочей части образца после разрыва к длине до испытания, выраженное в процентах.

Относительное сужение после разрыва (ψ ), как и относительное удлинение – характеристика пластичности материала. Определяется как отношение разности F 0 и минимальной (F к ) площади поперечного сечения образца после разрушения к начальной площади поперечного сечения (F 0 ), выраженное в процентах:

Упругость свойство металлов восстанавливать свою прежнюю форму после снятия внешних сил, вызывающих деформацию. Упру­гость – свойство, обратное пластичности.

Очень часто для определения прочности пользуются простым, не разрушающим изделие (образец), упрощенным методом – измерением твердости.

Под твердостью материала понимается сопротивление проникновению в него постороннего тела, т.е., по сути дела, твердость тоже характеризует сопротивление деформации. Существует много методов определения твердости. Наиболее распространенным является метод Бринелля (рис. 3.3, а), когда в испытуемое тело под действием силы Р внедряется шарик диаметром D . Число твердости по Бринеллю (НВ) есть нагрузка (Р ), деленная на площадь сферической поверхности отпечатка (диаметром d ).

Рис. 3.3. Испытание на твердость:

а – по Бринеллю; б – по Роквеллу; в – по Виккерсу

При измерении твердости методом Виккерса (рис. 3.3, б) вдавливается алмазная пирамида. Измерив диагональ отпечатка (d ), судят о твердости (HV) материала.

При измерении твердости методом Роквелла (рис. 3.3, в) индентором служит алмазный конус (иногда маленький стальной шарик). Число твердости – это значение, обратное глубине вдавливания (h ). Имеются три шкалы: А, В, С (табл. 3.1).

Методы Бринелля и Роквелла по шкале B применяют для мягких материалов, а метод Роквелла по шкале C – для твердых, а метод Роквелла по шкале A и метод Виккерса – для тонких слоев (листов). Описанные методы измерения твердости характеризуют среднюю твердость сплава. Для того чтобы определить твердость отдельных структурных составляющих сплава, надо резко локализовать деформацию, вдавливать алмазную пирамиду на определенное место, найденное на шлифе при увеличении в 100 – 400 раз под очень небольшой нагрузкой (от 1 до 100 гс) с последующим измерением под микроскопом диагонали отпечатка. Полученная характеристика (Н ) называется микротвердостью , и характеризует твердость определенной структурной составляющей.

Таблица 3.1 Условия испытания при измерении твердости методом Роквелла

Условия испытания

Обозначение т

вердости

Р = 150 кгс

При испытании алмазным конусом и нагрузке Р = 60 кгс

При вдавливании стального шарика и нагрузке Р = 100 кгс

Значение НВ измеряют в кгс/мм 2 (в этом случае единицы часто не указываются) или в СИ – в МПа (1 кгс/мм 2 = 10 МПа).

Вязкость способность металлов оказывать сопротивление ударным нагрузкам. Вязкость – свойство, обратное хрупкости. Многие детали в процессе работы испытывают не только статиче­ские нагрузки, но подвергаются также ударным (динамическим) нагрузкам. Например, такие нагрузки испытывают колеса локомо­тивов и вагонов на стыках рельсов.

Основной вид динамических испытаний – ударное нагружение надрезанных образцов в условиях изгиба. Динамическое нагружение ударом осуществляется на маятниковых копрах (рис. 3.4), а также падающим грузом. При этом определяют работу, затраченную на деформацию и разрушение образца.

Обычно в этих испытаниях, определяют удельную работу, затраченную на деформацию и разрушение образца. Ее рассчитывают по формуле:

КС = K / S 0 ,

где КС – удельная работа; К – полная работа деформации и разрушения образца, Дж; S 0 – поперечное сечение образца в месте надреза, м 2 или см 2 .

Рис. 3.4. Испытания на ударную вязкость с помощью маятникового копра

Ширина образцов всех типов измеряется до испытаний. Высоту образцов с U- и V-образным надрезом измеряют до испытаний, а с Т-образным надрезом уже после испытаний. Соответственно удельная работа деформации разрушения обозначается KCU, KCV и КСТ.

Хрупкость металлов в условиях низких температур называют хладоломкостью . Значение ударной вязкости при этом существенно ниже, чем при комнатной температуре.

Ещё одной характеристикой механических свойств материалов является усталостная прочность . Некоторые детали (валы, шатуны, рес­соры, пружины, рельсы и т.п.) в процессе эксплуатации испытывают нагрузки, изменяющиеся по величине или одновременно по величи­не и направлению (знаку). Под действием таких знакопеременных (вибрационных) нагрузок металл как бы устает, прочность его понижается и деталь разрушается. Это явление называют усталостью металла, а образовавшиеся изломы – усталостными. Для таких деталей необходимо знать предел выносливости , т.е. величину наибольшего напряжения, которое металл может выдер­жать без разрушения при заданном числе перемен нагрузки (циклов) (N ).

Износостойкость – сопротивление металлов изнашиванию вслед­ствие процессов трения. Это важная характеристика, например, для контактных материалов и, в частности, для контактного провода и токосъемных элементов токоприемника электрифицированного транс­порта. Износ заключается в отрыве с трущейся поверхности отдель­ных ее частиц и определяется по изменению геометрических размеров или массы детали.

Усталостная прочность и износостойкость дают наиболее полное представление о долговечности деталей в конструкциях, а вязкость характеризует надежность этих деталей.

Механические испытания металлов - это определение механических свойств металлических сплавов (для краткости - металлов), их способности выдерживать разного рода нагрузки в определенных пределах. По характеру действия на металл нагрузки, а соответственно, и испытания разделяют на статические (растяжение, сжатие, изгиб, кручение), динамические (ударные - ударная вязкость, твердость), усталостные (многократные циклические нагружения), длительные (воздействие атмосферных сред, ползучесть, релаксация) и специальные. Из всего многообразия испытаний основными являются испытания на растяжение, твердость, удар, изгиб и некоторые другие.

При испытаниях металлов на растяжение используют унифицированные образцы и специальные машины. В процессе испытаний по мере нарастания усилия все изменения, происходящие с металлическим образцом, фиксируются в виде диаграммы (рис. 2.5) с координатами: нагрузка по оси ординат и удлинение по оси абсцисс. С помощью диаграммы определяют предел пропорциональности апц, предел текучести ат, максимальное усилие - временное сопротивление aD и разрыв. Предел пропорциональности - это наибольшее напряжение (отношение усилия к площади сечения образца), до которого сохраняется прямая пропорциональность между напряжением и деформацией, когда образец упруго деформируется пропорционально нагрузке, т.е. во сколько раз увеличивается нагрузка, во столько же раз увеличивается удлинение. Если нагрузку снять, то длина образца вернется к начальной или увеличится незначительно (на 0,03... 0,001 %), определяя предел упругости.

Предел текучести - это напряжение, при котором образец деформируется (удлиняется) без заметного увеличения растягивающей нагрузки (горизонтальная площадка на диаграмме). Если снять нагрузку, то длина образца практически не уменьшится. При дальнейшем увеличении нагрузки на образец создается напряжение, которое соответствует наибольшей нагрузке на растяжение, предшествующей разрушению образца, называемое временным сопротивлением ав (пределом прочности при растяжении). Далее удлинение образца увеличивается, образуется шейка, по которой образец разрывается.

Диаграмма растяжения дает возможность судить о способности металла деформироваться (растягиваться), не разрушаясь, т.е. харастеризует его пластические свойства, которые можно выразить также относительным удлинением и сужением образца в момент разрыва (оба параметра выражают в процентах).

Относительное удлинение - это отношение приращения длины образца в момент перед разрывом к первоначальной его длине. Относительное сужение - это отношение уменьшения площади поперечного сечения шейки образца в месте его разрыва к первоначальной площади поперечного сечения образца.

Испытание на твердость - простой и быстрый способ проверки прочности металлического материала (далее для краткости металла) в условиях сложнонапряженного состояния. В производстве наиболее широко применяют методы Бринелля, Роквелла, Виккерса, а также некоторые другие. Поверхностные слои испытуемого металла не должны иметь поверхностных дефектов (трещин, царапин и др.).

Суть способа определения твердости методом Бринелля (твердость НВ) заключается во вдавливании стального закаленного шарика в испытуемый образец (изделие) при заданном режиме (величина нагрузки, продолжительность нагружения). После окончания испытания определяют площадь отпечатка (лунки) от шарика и вычисляют отношение величины усилия, с которым вдавливался шарик, к площади отпечатка в испытуемом образце (изделии).

Учитывая по опыту предполагаемую твердость испытуемого образца, применяют шарики разных диаметров (2,5; 5 и 10 мм) и нагрузки 0,6...30 кН (62,5...3 000 кгс). На практике используют таблицы перевода диаметра отпечатка в число твёрдости НВ. Данный способ определения твердости имеет ряд недостатков: отпечаток шарика повреждает поверхность изделия; сравнительно велико время измерения твердости; невозможно измерить твердость изделий, соизмеримую с твердостью шарика (шарик деформируется); затруднительно измерить твердость тонких и мелких изделий (происходит их деформация). В чертежах и технической документации твердость по Бринеллю обозначают НВ.

При определении твердости методом Роквелла используется прибор, в котором индентор - твердый наконечник 6 (рис. 2.6) под действием нагрузки проникает в поверхность испытуемого металла, по измеряется при этом не диаметр, а глубина отпечатка. Прибор настольного типа, имеет индикатор 8 с тремя шкалами - А. В, С для отсчета твердости соответственно в диапазонах 20... 50;

25... 100; 20 ... 70 единиц шкалы. За единицу твердости принята величина, соответствующая осевому перемещению индентора на 2 мкм. При работе со шкалами А и С наконечником служит алмазный конус с углом 120° при вершине или конус из твердого сплава. Алмазный конус применяют при испытаниях твердых сплавов, а твердосплавный конус - для деталей неответственного назначения твердостью 20...50 единиц.

Рис. 2.6. Прибор Роквелла для определения твердости:
I - рукоятка освобождения груза; 2 - груз; 3 - маховик; 4 - подъемный винт; 5 - столик; 6 - наконечник прибора; 7 - образец испытуемого металла; 8 - индикатор

При работе со шкалой В инден-тором служит маленький стальной шарик диаметром 1,588 мм (1/16 дюйма). Шкала В предназначена для измерения твердости сравнительно мягких металлов, так как при значительной твердости шарик деформируется и проникает в материал слабо, на глубину менее 0,06 мм. При пользовании шкалой С наконечником является алмазный конус, в этом случае прибором измеряют твердость закаленных деталей. В производственных условиях, как правило, пользуются шкалой С. Вдавливание наконечников осуществляют при определенной нагрузке. Так, при измерении по шкалам А, В и С нагрузка составляет соответственно 600; 1 ООО; 1 500 Н, твердость обозначают в соответствии со шкалой - HRA, HRB, HRC (величины ее безразмерные).

При работе на приборе Роквелла образец испытуемого металла 7 размещают на столике 5 и с помощью маховика 3 подъемным винтом 4 и грузом 2 создают требуемое усилие на наконечнике 6, фиксируя его перемещение по шкале индикатора 8. Затем поворотом рукоятки 7 снимают усилие с испытуемого металла и определяют значение твердости по шкале твердомера (индикатор).

Метод Виккерса - способ определения твердости материала вдавливанием в испытуемое изделие алмазного наконечника (ин-дентора), имеющего форму правильной четырехгранной пирамиды с двухгранным углом при вершине 136°. Твердость по Виккерсу HV - отношение нагрузки на индентор к площади пирамидальной поверхности отпечатка. Выбор вдавливающей нагрузки

50... 1000 Н (5... 100 кгс) зависит от твердости и толщины проверяемого образца.

Известны другие способы испытаний металлов на твердость, например, на приборе Шора и динамическим вдавливанием шарика. В тех случаях, когда твердость закаленной или закаленной и шлифованной детали необходимо определить, не оставив какого-либо следа от замера, пользуются прибором Шора, принцип работы которого основан на упругой отдаче - высоте отскока легкого ударника (бойка), падающего на поверхность испытываемого тела с определенной высоты.

Твердость на приборе Шора оценивается в условных единицах, пропорциональных высоте отскока бойка с алмазным наконечником. Оценка приближенная, так как, например, степень упругости тонкой пластинки и массивной детали большой толщины при одинаковой твердости будет разной. Но, поскольку прибор Шора портативен, его удобно применять для контроля твердости значительных по размерам деталей.

Для ориентировочного определения твердости очень больших изделий (например, вал прокатного стана) можно использовать ручной прибор Польди (рис. 2.7), действие которого основано на динамическом вдавливании шарика. В специальной обойме 3 находится боек 2 с буртиком, в который упирается пружина 7. В щель, находящуюся в нижней части обоймы 3, вставляются стальной шарик 6 и эталонная пластина 4 с известной твердостью. При определении твердости прибор устанавливают на проверяемую деталь 5 в месте измерения и по верхней части бойка 2 ударяют молотком 1 со средней силой один раз. После этого сравниваются размеры отпечатков лунок на проверяемой детали 5 и эталонной пластине 4, полученных одновременно от шарика при ударе по бойку. Далее по специальной таблице определяют число твердости испытуемого изделия.

Кроме рассмотренных твердомеров в производстве применяют универсальные портативные электронные твердомеры ТЭМП-2, ТЭМП-З, предназна-ченные для измерения твердости разных материалов (стали, меди, алюминия, резины и др.) и изделий из них (трубопроводов, рельсов, шестерен, отливок, поковок и др.) с использованием шкал Бринелля (НВ), Роквелла (HRC), Шора (HSD) и Виккерса (HV).

Рис. 2.7. Ручной прибор Польди для определения твердости:
1 - молоток; 2- боек; 3 - обойма; 4- эталонная пластина; 5 - проверяемая деталь; 6 -шарик; 7 - пружина; -- -аправление
усилия на боек

Принцип работы твердомеров динамический, основан на определении отношения скорости удара и отскока ударника 6 (рис. 2.8) (шарика 7 диаметром 3 мм), которое преобразуется электронным блоком 1 в трехзначное число условной твердости, отображаемое на жидкокристаллическом (ЖК) индикаторе 2 (например, 462). По измеренному числу условной твердости с помощью переводных таблиц находят числа твердости, соответствующие известным шкалам твердости.

Рис. 2.8. Портативный электронный твердомер ТЭМП-З:
1 - электронный блок; 2 - ЖК-индикатор; 3 - толкатель; 4 - спусковая кнопка; 5 - датчик; 6 - ударник; 7 - шарик; 8 - опорное кольцо; 9 - испытываемая поверхность изделия

Для измерения твердости этим методом прибор подготавливают следующим образом. Толкателем 3, расположенным на электронном блоке 1, заталкивают шарик 7, находящийся в датчике 5, в цанговый зажим и одновременно взводят спусковую кнопку 4, находящуюся сверху датчика 5. Далее датчик плотно прижимают опорным кольцом 8 к испытываемой поверхности 9 изделия и нажимают на спусковую кнопку 4. После соударения ударника 6 с испытуемой поверхностью изделия на ЖК-индикаторе появится результат в виде трехзначного числа условной твердости.

Окончательным значением измеренной условной твердости является среднее арифметическое пяти измерений. Один раз в год выполняют периодическую поверку прибора, пользуясь образцовыми мерами твердости не ниже второго разряда соответствующих шкал твердости (Бринелля, Роквелла, Шора и Виккерса), соблюдая при этом нормированные условия. С помощью указанных приборов кроме твердости можно определять временное сопротивление (предел прочности на растяжение) и предел текучести.

Наряду с твердомерами в производстве для определения твердости материала используют тарированные напильники. С их помощью контролируют твердость стальных деталей в тех случаях, когда нет твердомера или когда площадь для измерения очень мала или место недоступно для индентора прибора, а также тогда, когда изделие имеет весьма значительные размеры. Тарированные напильники - это напильники с заведомо известной твердостью, изготовленные из стали У10, они бывают трехгранные, квадратные и круглые с определенной насечкой. Сцепляемость насечки напильника с контролируемым металлом определяется по наличию следов царапания на контролируемой детали без смятия вершин зубьев на напильнике. В процессе эксплуатации острота зубьев напильника должна периодически проверяться на сцепляемость с контрольными образцами (кольцами). Напильники изготавливают двух групп твердости, соответственно для контроля нижнего и верхнего пределов твердости изделий. Контрольные кольца (пластинки) делают грех видов с твердостью 57...59; 59...61 и 61 ...63 HRC для поверки тарированных напильников, твердость которых соответствует пределам твердости контрольных образцов.

Испытание на удар (ударный изгиб) является одной из важнейших характеристик (динамической) прочности металлов. Особенно важно также испытание изделйй, работающих при ударных и знакопеременных нагрузках и при низких температурах. В этом случае металл, легко разрушающийся под действием удара без заметной пластической деформации, называют хрупким, а металл, разрушающийся под действием ударной нагрузки после значительной пластической деформации, - вязким. Установлено, что металл, хорошо работающий при испытании в статических условиях, разрушается при ударной нагрузке, так как не обладает ударной вязкостью.

Для испытания на ударную вязкость (сопротивления материала ударным нагрузкам) применяют маятниковый копер Шарпи
(рис. 2.9), на котором разрушают специальный образец - мена-же, представляющий собой стальной брусок прямоугольной формы с односторонним U- или V-образным надрезом посередине. Маятник копра с определенной высоты ударяет по образцу со стороны, противоположной надрезу, разрушая его. При этом определяют работу, совершенную маятником до удара и после удара, учитывая его массу и высоты падения Н и подъема h после разрушения образца. Разницу работ относят к площади поперечного сечения образца. Полученное при делении частное и характеризует ударную вязкость металла: чем вязкость меньше, тем материал более хрупкий.

Испытанию на изгиб подвергают хрупкие материалы (закаленная сталь, чугун), которые разрушаются без заметной пластической деформации. Так как момент начала разрушения определить не представляется возможным, то об изгибе судят по отношению изгибающего момента к соответствующему прогибу. Кроме этого, проводят испытание на кручение для определения пределов пропорциональности, упругости, текучести и других характеристик материала, из которого изготовлены ответственные детали (коленчатые валы, шатуны), работающие при большой нагрузке на кручение.

Рис. 2.9. Маятниковый копер Шарпи:
1 - маятник; 2 - образец; Н, h - высоты падения и подъема маятника;---- -траектория движения маятника

Помимо рассмотренных проводятся и другие испытания металлов, например, на усталость, ползучесть и длительную прочность. Усталость - это изменение состояния материала изделия до его разрушения под действием многократных знакопеременных (циклических) нагрузок, которые изменяются по величине или направлению, или и по величине, и по направлению. В результате длительной службы металл постепенно переходит из пластического состояния в хрупкое («устает»). Сопротивление усталости характеризуется пределом выносливости (пределом усталости) - наибольшим напряжением цикла, которое может выдержать материал без разрушения, при заданном числе повторно-переменных нагружений (циклы нагружения). Например, для стали установлены 5 млн циклов нагружения, для легких литейных сплавов - 20 млн. Такие испытания проводят на специальных машинах, в которых образец подвергают чередующимся напряжениям сжатия и растяжения, знакопеременным изгибам, кручению, повторным ударным нагрузкам и другим видам силового воздействия.

Ползучесть (крип) - это медленное нарастание пластической деформации материала под воздействием длительно действующей нагрузки при определенной температуре, по величине меньшей нагрузки, создающей остаточную деформацию (т.с. меньше, чем предел текучести материала детали при данной температуре). При этом пластическая деформация может достигнуть такой величины, которая изменяет форму, размеры изделия и приводит к его разрушению. Ползучести подвержены почти все конструкционные материалы, но для чугуна и стали она существенна при нагреве свыше 300 °С и возрастает с повышением температуры. У металлов с низкой температурой плавления (свинец, алюминий) и полимерных материалов (резина, каучук, пластмассы) ползучесть наблюдается при комнатной температуре. Испытывают металл на ползучесть на специальной установке, в которой образец при заданной температуре нагружается грузом постоянной массы в течение длительного времени (например, 10 тыс. ч). При этом периодически точными приборами измеряют величину деформации. С увеличением нагрузки и повышением температуры образца степень его деформации увеличивается. Предел ползучести - это такое напряжение, которое за 100 тыс. ч вызывает удлинение образца при определенной температуре не более I %. Длительная прочность - это прочность материала, который в течение длительного времени находился в состоянии ползучести. Предел длительной прочности - напряжение, которое приводит к разрушению образца при заданной температуре за определенное время, соответствующее условиям эксплуатации изделий.

Испытания материалов необходимы для создания надежных машин, способных длительное время работать без поломок и аварий в чрезвычайно тяжелых условиях. Это винты самолетов и вертолетов, роторы турбин, детали ракет, паропроводы, паровые котлы и другое оборудование.

Для устройств, работающих в иных условиях, проводят специфические испытания, подтверждающие их высокую надежность и работоспособность.

32272 0

Испытание на растяжение

Испытание на растяжение — это относительно простой для понимания и объяснения метод испытания материала, и, возможно, его используют чаще остальных. При проведении этого испытания, образец материала растягивают вдоль продольной оси с помощью растягивающего приспособления испытательной машины (Рис. 1.7.4). Испытание проводят с постоянной скоростью, (т.е. с постоянной скоростью растяжения образца), а нагрузку измеряют с помощью датчика нагрузки. Одновременно с этим измеряют удлинение, соответствующее прилагаемой нагрузке. Удлинение можно измерить несколькими способами, в том числе, по пути движения подвижной траверсы, или путем прикрепления к материалу тензодатчика при очень низких величинах деформации.

Рис. 1.7.4. Схема испытания образца для определения прочности на растяжение

Напряжение и соответствующая ему деформация могут быть рассчитаны по приведенным выше формулам. По этим данным можно построить кривую напряжение - деформация, а по этой кривой можно определить ряд свойств. Типичные примеры кривых напряжения-деформации для некоторых материалов представлены на Рис. 1 .7.5.

Рис. 1.7.5. Вид кривых напряжение-деформация для материалов различного типа. Кривые представлены не в масштабе

Примером пластичного или ковкого материала является мягкая сталь, на графике напряжение-деформация для которой показаны: область линейной упругости, четко определяемая точка предела текучести и высокая степень пластичности материала. И, напротив, на графике такого твердого материала, как гипс, видна только линейная область упругости, а затем происходит разрушение без каких-либо признаков пластической деформации.

Многие пластмассы, такие, как полиметилметакрилат, также являются жесткими материалами, однако они обладают меньшей хрупкостью, чем гипс. Поведение эластомера, примером которого является силиконовый оттискной материал, очень необычно по сравнению с другими материалами. Оказывается на графике напряжение-деформация у него отсутствует область линейной упругости, а область упругого восстановления у эластомера очень обширна. Относительное удлинение у него значительно выше, чем, например, у стали или гипса. Эластомер эластичен по своей природе, и, подобно резине, он восстанавливает свои исходные размеры сразу же после снятия напряжения. Кроме того, резина обладает крайне низкой прочностью при растяжении.

Образование шейки при испытании на растяжение

При упругой деформации наблюдается небольшое увеличение объема материала за счет того, что расстояние между атомами, из которых состоит твердое тело, удлиняется при растяжении. Однако при пластической деформации таких изменений объема не наблюдается. При такой деформации увеличение длины материала может привести к уменьшению площади его поперечного сечения. Это в свою очередь приведет к возникновению локализованной области материала, которая представлена на Рис. 1.7.6. Эта область уменьшения поперечного сечения образца называется шейкой. Часто такое явление наблюдается при растяжении материалов с повышенной вязкостью (пластичных материалов).

Рис. 1.7.6. Образование «шейки» при растяжении пластичного материала

Результаты испытаний на растяжение могут быть очень полезными при создании новых конструкций, поскольку для того, чтобы предсказать поведение конструкции, находящейся под нагрузкой, необходимо знание параметров упругой деформации материала.

Максимальное напряжение, которое может безопасно выдержать материал, определяется пределом текучести. Следовательно, от предела текучести зависит максимальная нагрузка, которой этот материал способен противостоять, хотя благоразумнее было бы включить в расчеты некоторый коэффициент запаса прочности.

Если в технологический процесс изготовления продукции включены такие операции, как прокатка, протяжка проволоки или прессование, необходимо знать величину пластической деформации, которую материал сможет выдержать без разрушения. Если материал обладает высокой пластичностью, то ему можно придавать нужную форму, однако если пластичность материала невысока, то создание формы путем воздействия нагрузки будет невозможным.

Испытание на сжатие

Испытания на растяжение проводить сложно, особенно, если материал хрупкий - в таких случаях наблюдается большой разброс результатов. Альтернативным методом оценки прочности материала является испытание на сжатие, которое легче провести, если материал хрупкий, так как в этом случае разброс результатов будет меньшим. Другой причиной, по которой хрупкие образцы следует испытывать на сжатие, является тот факт, что эти материалы используются в условиях, где действуют сжимающие нагрузки.

На Рис. 1.7.7 схематически представлено проведение испытания на сжатие. Поскольку образец удерживается за счет трения в точках контакта с опорными пластинами испытательного прибора, здесь наблюдается увеличение площади поперечного сечения в середине образца, и одновременно с этим материал приобретает форму бочонка. Этот эффект «приобретения формы бочонка» приводит к возникновению очень сложной модели распределения напряжений в материале (также представленной на Рис. 1.7.7). Анализировать такую модель очень сложно. Это затрудняет интерпретацию результатов испытаний на сжатие.

Рис. 1.7.7. Распределение напряжений растяжения и сдвига в образце при определении прочности материала на сжатие

Компромиссным испытанием является измерение так называемой диаметральной прочности, в который изготовленный из испытываемого материала диск подвергают воздействию сжимающей нагрузки. В результате приложения этой нагрузки к диску, в направлении, перпендикулярном направлению приложения сжимающей нагрузки, возникают напряжения растяжения, что схематически представлено на Рис. 1.7.8.

Рис. 1.7.8. Схема испытания образца для определения прочности материала на диаметральный разрыв

Растягивающее напряжение, а, рассчитывают по формуле:

где Р - нагрузка, D - диаметр диска, Т - толщина диска. Обычно этот метод используют для испытаний хрупких стоматологических материалов, поскольку он прост и позволяет получать более воспроизводимые результаты, чем в случае испытаний на растяжение.

Испытание твердости

Испытание твердости - это измерение сопротивления поверхности материала воздействию инструмента, внедряемого или вдавливаемого в поверхность (индентеров), или режущего инструмента. Испытание твердости проводят для определения сопротивления материала царапанью или стиранию. Кроме того, существует приближенная зависимость между твердостью материала и пределом прочности на растяжение.

Для испытаний используют индентер в форме шарика (при испытании твердости по Бринелю), пирамидки (при испытании твердости по Виккерсу или по Кнуппу) или конуса (при испытании твердости по Роквеллу). Разумеется, твердость самого индентера должна быть выше твердости испытываемого материала. Образец вдавливают в поверхность материала в течение определенного периода времени, и на поверхности материала остается отпечаток шарика, пирамидки или конуса (Рис. 1.7.9).

Рис. 1.7.9 Вид отпечатка индентера на поверхности образца для различных видов твердомеров

Размер полученного отпечатка будет зависеть от твердости испытуемого материала. Размеры отпечатка можно измерить и подсчитать из них эмпирическое значение числа твердости. Выбор метода испытания твердости до некоторой степени зависит от природы материала, который будет подвергнут испытанию.

Испытание на ударную прочность - это оценка сопротивления материала мгновенному приложению нагрузки. Стандартный образец в виде балки с насечками подвергают воздействию импульсной нагрузки, создаваемой маятниковым копром. Схематическое изображение испытания на ударную прочность представлено на Рис. 1.7.10.

Рис. 1.7.10. Расположение образца при определении прочности на удар по Шарли. Маятник с ударником, который падает с определенной высоты

Маятниковый копер отпускают с определенной высоты, он ударяет и разрушает образец, который установлен на параллельных опорах. Часть энергии маятника используется для разбивания образца. Если будут известны начальная высота, на которой находился маятник, и высота, на которую он поднялся после разрушения образца, то нетрудно будет рассчитать разницу энергий. Эта разница является мерой количества энергии, которая была поглощена образцом, что и вызвало его разрушение. Несмотря на то, что результаты этого испытания являются эмпирическими, его можно применять для оценки ударной прочности ряда материалов. Присутствие насечек на образце делает условия проведения испытания очень жесткими, а также является показателем чувствительности материала к присутствию надрезов на его поверхности.

Испытание на усталостную прочность

Во многих практических ситуациях материалы подвергаются воздействию переменных нагрузок чаще, чем статических, о которых говорилось выше. Постепенное накопление незначительных количеств пластической деформации, возникающих в результате воздействия цикла переменных напряжений, известно под названием усталости материала.

Усталость может стать причиной разрушения материала при напряжениях, величина которых значительно ниже предела текучести. Для проведения испытания на усталостную прочность образцы материала подвергают воздействию циклических нагрузок в некотором их диапазоне. В каждом случае подсчитывают число циклов, требуемых для разрушения образцов.

Величину напряжения выражают графически в виде логарифмической зависимости от соответствующего числа циклов напряжений, которое требуется для разрушения образца. Кривая зависимости напряжения от числа циклов (кривая Н - Ч) представлена на Рис. 1.7.11.

Существуют две формы поведения материалов. Для некоторых материалов по мере увеличения числа циклов нагрузки происходит снижение напряжений, которые способен выдержать материал. Однако для других материалов существует уровень напряжений, называемый пределом выносливости, ниже которого материал можно подвергать неопределенному числу циклов нагрузки, не вызывая его разрушения.

Усталостная прочность в значительной степени определяется характеристиками поверхности материала. Улучшение качества обработки поверхности или создание на поверхности напряжений сжатия механическими, термическими или химическими методами, приводит к повышению усталостной кривой Н - Ч.

Кроме того, на характер кривой Н - Ч выраженное влияние оказывает среда, в которой проходит эксперимент. Например, в коррозионных средах усталостная прочность материала снижается.

Клиническое значение

В некоторых случаях материал может быть достаточно прочным, чтобы выдерживать нагрузки в начале его использования в полости рта, но это не означает, что он сможет противостоять таким же нагрузкам в отдаленные сроки клинической службы.

Испытание на крип (ползучесть)

Если материал долгое время находится под нагрузкой, то под воздействием постоянного напряжения он может непрерывно деформироваться, даже несмотря на то, что величины действующих на него напряжений значительно ниже предела упругости. Эта деформация материала, зависящая от времени его нахождения под нагрузкой, называется крипом, который, в конечном итоге, ведет к разрушению материала. В частности, понимание этого явления важно, если материал используют при температурах, превышающих половину значения температуры плавления или температуры размягчения, что, например, характерно для некоторых амальгамных фаз или многих пластических материалов. При температурах на 40 - 50% меньше абсолютной точки плавления материала, крип ничтожно мал.

На Рис. 1.7.12 представлена типичная кривая крипа. На ней можно выделить 4 стадии деформации:

Начальное удлинение, возникшее в результате приложения нагрузки;

Переходный или первичный крип, который стремится к непрерывному увеличению;

Устойчивое состояние (вторичный крип);

Третичный крип.

Рис. 1.7.12. Кривая крипа, на которой можно выделить четыре стадии ползучести в условиях долговременных испытаний при высокой температуре

Клиническое значение

Механические свойства материалов можно определять в широких пределах. Это позволяет сравнивать между собой разные стоматологические материалы, хотя значение результатов таких испытаний для клиники остается предметом многочисленных дебатов.

Основы стоматологического материаловедения
Ричард ван Нурт

Механические свойства характеризуют способность материала сопротивляться деформации и разрушению под действием приложенных нагрузок.

По характеру изменения во времени действующей нагрузки механи-ческие испытания могут быть статическими (на растяжение, сжатие, изгиб, кручение), динамическими (на ударный изгиб) и циклическими (на усталость).

По воздействию температуры на процесс их делят на испытания при комнатной температуре, низкотемпературные и высокотемпературные (на длительную прочность, ползучесть).

Статические испытания проводятся при воздействии на образец с определенной скоростью постоянно действующей нагрузки. Скорость деформации составляет от 10 - 4 до 10 - 1 с - 1 . Статические испытания на растяже-ние относятся к наиболее распространенным. Свойства, определяемые при этих испытаниях, приведены в многочисленных стандартах по техническим условиям на материалы. К статическим относятся испытания на растяжение, сжатие, изгиб, кручение.

Динамические испытания характеризуются приложением к образцу ударной нагрузки и значительной скоростью деформации. Длительность ис-пытания не превышает сотен долей секунды. Скорость деформации состав-ляет около 10 2 с - 1 . Динамические испытания чаще всего проводят по схеме ударного изгиба образцов с надрезом.

Циклические испытания характеризуются многократными измене-ниями нагрузки по величине и по направлению. Примером испытаний явля-ются испытания на усталость, они длительны и по их результату определяют число циклов до разрушения при разных значениях напряжения. В конечном итоге находят предельные напряжения, который образец выдерживает без разрушения в течение определенного числа циклов нагружения.

Испытания на твердость.

Простейшим механическим свойством является твердость. Методы определения твердости в зависимости от скоро-сти приложения нагрузки делятся на статические и динамические, а по спо-собу ее приложения - на методы вдавливания и царапания. Методы опреде-ления твердости по Бринеллю, Роквеллу, Виккерсу относятся к статическим методам испытания.

Твердость - это способность материала сопротивляться вдавливанию в него более твердого тела (индентора) под действием внешних сил.

При испытании на твердость в поверхность материалов вдавливают пирамиду, конус или шарик (индентор), в связи с чем различают методы ис-пытаний, соответственно, по Виккерсу, Роквеллу и Бринеллю. Кроме того, существуют менее распространенные методы испытания твердости: метод упругого отскока (по Шору), метод сравнительной твердости (Польди) и не-которые другие.

При испытании материалов на твердость не изготавливают стандарт-ных специальных образцов, однако к размерам и поверхности образцов и изделий предъявляются определенные требования.

Твердость по Виккерсу (ГОСТ 2999-75) устанавливают путем вдавли-вания в металл индентора - алмазной пирамиды с углом при вершине 136° под действием постоянной нагрузки Р: 1; 2; 2,5; 3; 5; 10; 20; 30; 50 или 100 кгс и выдержки под нагрузкой в течение 10-15 с. Для определения твердости черных металлов и сплавов используют нагрузки от 5 до 100 кгс, медных сплавов - от 2,5 до 50 кгс, алюминиевых сплавов - от 1 до 100 кгс. После снятия нагрузки с помощью микроскопа прибора находят длину диагонали отпечатка, а твердость HVрассчитывают по формуле

HV = 1,854*P/d 2

где Р - нагрузка, кгс; d- диагональ отпечатка, мм.

Имеется таблица зависимости твердости от величины нагрузки и дли-ны диагонали. Поэтому на практике вычислений не производят, а пользуются готовой расчетной таблицей. Твердость по Виккерсу HVизмеряется в кгс/мм 2 , Н/мм 2 или МПа. Значение твердости по Виккерсу может изменяться от HV2060 до HV5 при нагрузке 1 кгс.

По методу Бриннелля вдавливают в образец или изделие стальной закаленный шарик диаметром 10, 5 или 2,5 мм под действием нагрузок 3000, 1000, 750, 500, 250, 62,5 кгс и др. (ГОСТ 9012-59, рис. 1.). Полученный круглый отпечаток на образце измеряют под лупой и по таблицам находят величину твердости по Бринеллю, значение которой не превышает 450 НВ. Твердость по Бринеллю почти совпадает со значениями твердости по Виккерсу.

Твердость НВ - это также величина напряжений сопротивления вдавливанию:

HB=P/F ot =P/πDt=2P/πD(D-√(D 2 -d 2))

F ot - площадь отпечатка, мм 2 ;

t- глубина сегмента отпечатка;

D- диаметр шарика, мм;

d- диаметр отпечатка, мм.

Твердость по Бринеллю НВ (по умолчанию) имеет размерность кгс/мм 2 , например, твердость алюминиевого спла-ва равна 70 НВ. При нагрузке, определяе-мой в ньютонах, твердость по Бринеллю измеряется в МПа. Например, твердость отожженной стали равна 207 НВ при на-грузке 3000 кгс, диаметре шарика 10 мм, диаметре отпечатка 4,2 мм или, учитывая коэффициент перевода: 1 Н = 9,8 кгс,

НВ = 2 028 МПа.

Рис. 1. Схема определения твердости по Бринеллю

По методу Роквелла (ГОСТ 9013-59) вдавливают алмазный конус с углом при вершине 120° (шкалы А и С) или стальной шарик диаметром 1,5875 мм (шкала В).

При этом определяют твердость, соответственно, HRA, HRC и HRB. В на-стоящее время измерение твердости по методу Роквелла является наиболее распространенным методом, потому что при использовании твердомеров Ро-квелла не требуется измерять отпечаток, число твердости считывается со шкалы прибора сразу после снятия основной нагрузки.

Метод заключается во вдавливании в испытуемый образец индентора под действием двух последовательно прикладываемых нагрузок - предвари-тельной Р 0 и основной Р 1 которая добавляется к предварительной, так что общая нагрузка Р = Р 0 + Р 1 После выдержки в течение нескольких секунд ос-новную нагрузку снимают и измеряют остаточную глубину проникновения индентора, который при этом продолжает находиться под действием предва-рительной нагрузки. Перемещение основной стрелки индикатора на одно де-ление шкалы соответствует перемещению индентора на 0,002 мм, которое принимается за единицу твердости.

На рис. 2 представлена схема измерения твердости по методу Рок-велла алмазным или твердосплавным конусом. При испытаниях измеряют глубину восстановленного отпечатка. Шкалы А и С между собой совпадают, поскольку испытания проводят одним и тем же индентором - алмазным ко-нусом, но при разных нагрузках: 60 и 150 кгс соответственно. Твердость в этом случае определяется как

HRC= t/0,002=100-(H-h)/0,002

HRB = 130-(H-h)/0,002

Рис. 2. Схема определения твердости по Роквеллу (индентор - конус)

На практике значения твердости по Роквеллу не рассчитываются по формулам, а считываются с соответствующей (черной или красной) шкалы прибора. Шкалы HRC и HRA используются для высокой твердости, HRB -для низкой. Число твердости по Роквеллу измеряют в условных единицах, оно является мерой глубины вдавливания индентора под определенной на-грузкой.

Испытание на растяжение материалов проводят в соответствии с ГОСТ 1497-84 «Методы испытаний на растяжение». Стандарт устанавливает методы статических испытаний на растяжение черных и цветных металлов для определения при температуре 20 °С пределов пропорциональности, уп-ругости, текучести, временного сопротивления разрыву, относительного уд-линения и относительного сужения, модуля упругости.

Для испытаний применяют плоские и цилиндрические образцы, выре-занные из детали или специально изготовленные. Размеры образцов регла-ментированы указанным стандартом, они подчиняются геометрическому по-добию и могут быть короткими и длинными. Для цилиндрического образца берется соотношение начальной рабочей длины l 0 и исходного диаметра d 0: l 0 = 5d 0 - короткий образец, l 0 = 10d 0 - длинный образец. Для плоского образца берется соотношение рабочей длины l 0 и площади поперечного сечения F 0:

l 0 = 5,65√F 0 - короткий образец, l 0 = 11,3√F 0 - длинный образец. Цилиндри-ческие образцы изготавливаются диаметром 3 мм и более. Образцы состоят из рабочей части длиной l 0 и головок, форма и размер которых соответствуют захватам машины (рис. 3).


Рис. 3. Цилиндрические и плоские образцы до (а) и после (б) испытания на растяжение

Растяжение образца проводят на специальных машинах, позволяющих фиксировать величину прилагаемой нагрузки и изменение длины образца при растяжении. Эти же машины дают возможность записывать изменение длины образца при увеличении нагрузки (рис. 4), т.е. первичную диаграмму испытания на растяжение в координатах: нагрузка Р, Н, кН; и абсолютное удлинение образца А, мм.


Рис. 4. Первичная диаграмма растяжения

Измеряя величину нагрузки в характерных точках диаграммы испы-таний на растяжение (рис.4), определяют следующие параметры механиче-ских свойств материалов:

σ пц - предел пропорциональности, точка р;

σ 0,05 - предел упругости, точка е;

σ т - предел текучести физический, точка s ;

σ 0,2 - предел текучести условный;

σ в - временное сопротивление разрыву, или предел прочности, точка b .

Значения 0,05 и 0,2 в записи предела упругости и текучести соответ-ствуют величине остаточной деформации ∆l в процентах от l 0 при растяжении образца. Напряжения при испытании на растяжение вычисляют путем деления нагрузки Р, соответствующей характерной точке на диаграмме, на площадь первоначального поперечного сечения F 0 рабочей части испытуемо-го образца:

σ пц =P пц / F 0 ; σ 0,05 =P 0,05 / F 0 ; σ т =P т / F 0 , или σ в =P max / F 0 ;

Площадь поперечного сечение F 0 определяется по следующим формулам:

для цилиндрического образца

F 0 = πd 0 2 / 4

для плоского образца

где а 0 - первоначальная толщина; b 0 - первоначальная ширина образца.

В точке k устанавливают напряжение сопротивления разрушению материала.

Предел пропорциональности и предел упругости определяют с помо-щью тензометра (прибор для определе-ния величины деформации). Предел текучести физический и условный рассчи-тывают, находя нагрузку по диаграмме растяжения. Если на диаграмме нет площадки текучести, то для вычисления условного предела текучести необходи-мо провести графические построения на диаграмме (рис. 1.5). Вначале находят величину остаточной деформации, рав-ную 0,2 % от l 0 , далее отмечают отрезок на оси деформации, равный 0,2 % от l 0 , и проводят линию, параллельную пропорциональному участку диаграммы рас-тяжения, до пересечения с кривой растяжения.

Рис. 5. Определение предела текучести

Нагрузка P 0,2 соответствует точке их пересечения. Физический и условный предел текучести характери-зуют способность материала к началу пластической деформации, т.е. сопротивление малой пластической деформации.

Предел прочности можно подсчитать, используя показания силоизмерителя, по максимальной нагрузке Р max при разрыве либо найти Р max (Р в) по первичной диаграмме растяжения. Характер деформации при растяжении вязких и хрупких материалов существенно различается.

Хрупкие материалы после достижения максимальной нагрузки быстро разрушаются без значительной пластической деформации, поэтому σ в для

хрупких материалов является характеристикой сопротивления разрушению, а для пластичных - характеристикой сопротивления деформации.

Напряжение разрушения определяют как истинное. При этом нагруз-ку разрушения делят на конечную площадь поперечного сечения образца после разрушения F K:

S к =P к /F к

Все рассчитанные таким образом величины являются характеристи-ками прочности материала.

Пластичност ь, т.е. способность деформироваться без разрушения, характеризуется изменениями размеров образца. При испытании на разрыв определяют следующие характеристики пластичности:

относительное удлинение

δ=(l k -l 0)/ l 0 *100%

относительное сужение

Ψ=(F 0к -F)/ F 0 *100%

где l к, F к — соответственно, длина рабочей части и площадь поперечного сече-ния образца после разрыва.

Рассчитанные характеристики механических свойств после испытания на растяжение заносятся в протокол.

Испытания на ударный изгиб.

Ударная вязкость характеризует удельную работу, затрачиваемую на разрушение при ударе образца с надре-зом. Ударная вязкость испытывается на маятниковом копре с постоянным запасом работы маятника по ГОСТ 9454-78 «Металлы. Метод испытания на ударный изгиб при пониженной, комнатной и повышенной температурах». Стандарт распространяется на черные и цветные металлы и сплавы и уста-навливает метод испытания при температурах от -100 до +1000 °С. Метод основан на разрушении ударом маятникового копра образца с концентрато-ром напряжений. В результате испытания определяют полную работу, затра-ченную при ударе К, или ударную вязкость КС.

Используют образцы прямоугольной формы с концентратором типа U, V, Т (усталостная трещина). Наиболее распространенными образцами являются образцы размерами 55x10x10 мм с U-концентратом 2x2 мм (рис. 6).

Рис. 6. Стандартный образец с U -образным надрезом для испытаний на ударный изгиб

На разрушение ударом образца затрачивается только часть энергии маятника, в связи с чем маятник после разрушения образца продолжает дви-гаться, отклоняясь на определенный угол. Чем больше величина работы, за-трачиваемой на разрушение образца, тем на меньший угол он отклоняется от вертикали после разрушения. По величине этого угла и определяют работу удара К или работу, затраченную на разрушение образца. Работу разрушения К относят к площади поперечного сечения образца Soв месте излома и тем самым находят КС - ударную вязкость:

где Kизмеряется в Дж (кгс*м), S 0 — в м 2 (см 2).

В зависимости от вида концентратора ударная вязкость обозначается

KCU, KCV, КСТ и имеет размерность МДж/м 2 (МДж/см 2) или кгс*м/см 2 .

Механические испытания имеют важнейшее значение в промышленности. В соответствии с этим разработаны различные методы испытаний, с помощью которых определяют механические свойства металлов.

Наиболее распространенными испытаниями являются статическое растяжение, динамические испытания и испытания на твердость.

Статическими называют испытания, при которых испытуемый материал подвергают воздействию постоянной силы или силы возрастающей очень медленно.

Динамическими называют такие испытания, при которых испытываемый металл подвергается воздействию удара или силы, возрастающей очень быстро.

Кроме того, существуют испытания на усталость, износ, ползучесть, которые дают более полное представление о свойствах металлов.

Испытания на растяжение. Статическое испытание на растяжение - весьма распространенный способ механических испытаний. Для статических испытаний изготавливают круглые образцы или плоские образцы для листовых материалов (рис.20 ). Образцы состоят из рабочей части и головок, предназначенных для закрепления в захватах разрывной машины. Расчетная длинаl 0 берется несколько меньше рабочей длиныl 1 . Размеры образцов стандартизованы. Диаметр рабочей части круглого образца равен 20мм . Образцы других диаметров называют пропорциональными.

Рис.20. Образцы для статических испытаний металлов:

1 - круглый, 2 - плоский

Растягивающее усилие создает напряжение в испытуемом образце и вызывает его удлинение; когда напряжение превысит предел прочности, он разрывается.

На рис.21 приведена диаграмма растяжения мягкой стали, построенная в системе прямоугольных координат. По оси ординат отложено усилиеР кГ , по оси абсцисс - деформация (абсолютное удлинение образца l мм ). Эта диаграмма получается при постепенном увеличении растягивающего усилия вплоть до разрыва образца.

Рис.21. Диаграмма растяжения мягкой стали

Величина напряжения в любой точке диаграммы может быть определена путем деления усилияР на площадь поперечного сечения образца.

На диаграмме можно отметить несколько характерных точек. Участок ОА является отрезком прямой и показывает, что до точкиА удлинение образца пропорционально усилию (нагрузке); каждому приращению нагрузки соответствует и одинаковое приращение деформации. Такая зависимость между удлинением образца и приложенной нагрузкой являетсязаконом пропорциональности .

При дальнейшем нагружении образца наблюдается отклонение от закона пропорциональности: на диаграмме появляется криволинейный участок. До точки В деформации у образца упругие.

Точкой С на диаграмме отмечено начало горизонтальной площадки, которая показывает, что образец удлиняется без увеличения нагрузки: металл как бы течет. Наименьшее напряжение, при котором без увеличения нагрузки продолжается деформация образца называетсяфизическим пределом текучести . Предел текучести т определяется по формуле

кГ мм 2 ,

где Р с .

Текучесть характерна только для низкоуглеродистой отожженной стали и для латуни некоторых марок. Высокоуглеродистые стали и другие металлы не имеют площадки текучести. Для таких металлов определяют условный предел текучести при остаточном удлинении 0.2%. Напряжение, при котором растягиваемый образец получает остаточное удлинение, равное 0.2% своей расчетной длины, называется условным пределом текучести и обозначается 0.2

кГ мм 2 .

Точка D показывает наибольшую наибольшую нагрузку, которую может выдержать образец. Условное напряжение, отвечающее наибольшей нагрузке, предшествующей разрушению образца, называетсяпределом прочности при растяжении (временным сопротивлением разрыву) и определяется по формуле

кГ мм 2 ,

где P .

Для точки D удлинение l 3 образца и сужение его поперечного сечения происходит равномерно по всей длине рабочей части. По достижении точкиD деформация образца сосредотачивается в месте наименьшего сопротивления и дальнейшее удлинение l 4 протекает за счет образования шейки, по которой происходит разрыв образца при нагрузкеР К .

При разрыве упругая деформация l уп исчезает и абсолютное остаточное удлинение l ост сложится из удлинения равномерного l 1 и удлинения местного l 2 , т.е.

l ост = l 1 + l 2 .

Для оценки пластичности металла важно знать относительное удлинение и относительное сужение площади поперечного сечения в процентах.

Относительное удлинение (в %) определяется по формуле

,

где l 1 -длина образца после разрыва,мм ;

l 0 -расчетная длина образца,мм ;

При удлинении одновременно уменьшается площадь поперечного сечения. В месте разрыва эта площадь будет наименьшей. Относительное сужение (в %) определяется по формуле

,

где F 0 - начальная площадь поперечного сечения образца,мм 2 ;

F 1 - площадь в месте разрыва,мм 2 .

У хрупких металлов относительное удлинение и относительной сужение близки к нулю; у пластичных металлов они достигают нескольких десятков процентов.

Таким образом, статическое испытание на растяжение дает характеристики прочности - уп , т (или 0,2 ) и характеристики пластичности - и .

Испытания на твердость .

Испытания на твердость проводятся вдавливанием твердого наконечнека.

По методу Бринелля стальной закаленный шарик диаметромD (10; 5 или 2.5мм ) вдавливается в испытуемый образец силойР (3000;1000; 750кГ или меньше). В результате на поверхности образца остается отпечаток в форме шарового сегмента диаметромd (рис.22 ). Величина отпечатка будет тем меньше, чем тверже металл. Число твердости по Бринеллю НВ вычисляется по формуле

кГ мм 2 ,

;

F - величина поверхности отпечатка,мм 2 .

Рис.22. Схема испытания по Бринеллю

Для малых изделий применяют шарики меньшего диаметра при меньших усилиях вдавливания. Толщина металла под отпечатком должна быть не меньше десятикратной глубины отпечатка, а расстояние от центра отпечатка до среза поверхности не меньше D .

Для испытания на твердость по Бринеллю в настоящее время применяют в основном рычажные прессы.

Как показали исследования, между пределом прочности металлов при растяжении в и твердость по БринеллюНВ существует зависимость:

для катаной и кованой стали в = 0.36НВ ;

для литой стали...................... в =(0.3-0.4) НВ :

для серого чугуна.................... в =0.1 НВ .

По методу Бринелля можно испытывать материалы с твердостью НВ до 450; если материалы тверже, то стальной шарик может деформироваться. Этот метод непригоден также для испытания тонколистового материала.

По методу Роквела испытание на твердость производится путем вдавливания в образец стального шарика диаметромD =1.58мм (116 дюйма) или алмазного конуса с углом 120 0 .

Стальной шарик применяется для испытания мягких металлов (твердость меньше 220 по шкале Бринелля) при нагрузке 100 кГ , алмазный конус - для испытания твердых металлов при нагрузке 150кГ . Образец помещают на столик 2 прибора Роквелла (рис.23 ) и вращением маховика 1 поднимают его до соприкосновения с алмазным конусом 3 (или стальным шариком). Вращение маховика продолжают до тех пор пока давление конуса или шарика не станет равным 10кГ (предварительная нагрузка), что указывается малой стрелкой индикатора 4. Далее прикладывают основную нагрузку с помощью рукоятки 5. Вдавливание длится 5-6сек , затем основная нагрузка снимается. После этого большая стрелка индикатора показывает величину твердости.

Рис.23 . Пресс Роквелла

Циферблат индикатора имеет две шкалы: красную В для испытания стальным шариком и чернуюС для испытания алмазным конусом.

Твердость по Роквеллу является величиной условной, характеризующей разность глубин отпечатков. Число твердости по Роквеллу обозначается HR с добавлением индекса шкалы, по которой производилось испытание, напримерHR В илиHR С. Для испытания очень твердых материалов применяют алмазный конус при нагрузке 60кГ . Отсчет производят по черной шкале.

Метод Виккерса, позволяющий измерить твердость как мягких, так и очень твердых металлов и сплавов; он пригоден для определения твердости тонких поверхностных слоев (например при химико-термической обработке).

По этому методу в образец вдавливается четырехгранная алмазная пирамида с углом при вершине 136 0 . Нагрузка может применяться от 5 до 120кГ. Замер отпечатка производится с помощью микроскопа, находящегося на приборе.

Число твердости определяется по формуле

кГ мм 2 ,

;

F - площадь пирамидального отпечатка,мм 2

Практически величина HV берется из таблиц.

Испытания на микротвердость производят вдавливанием алмазной пирамиды с углом при вершине 136 0 под нагрузкой от 2 до 200г ; число твердости выражаетсякГ мм 2 . По этому методу можно определять твердость отдельных структурных составляющих сплавов, мелких деталей, металлических нитей, окисных пленок и т.д. Нарис.24,а показан прибор ПМТ-3 для испытания на микротвердость.

Столик 11 и стойка 4 тубуса опираются на станину 1 прибора. Испытуемый предмет 2 устанавливается на столик под объектив 9, через который производят наводку на фокус микроскопа и установку нитей с помощью окулярного микроскопа 6. Затем алмазная пирамида 10 вдавливается в испытуемый предмет в течении 5-7 сек. После снятия нагрузки микроскопом измеряют диагональd (рис.24,б ), совмещая пересечение нитей станачала с правым углом отпечатка (пунктирные линии), а затем с левым (сплошные линии).

По величине диагонали определяют площадь отпечатка и твердость по выше приведенной формуле (HV n ).

Прочие механические испытания .Испытания ударной нагрузкой проводят для деталей машин и механизмов испытывающих ударные (динамические) нагрузки, так как некоторые металлы с достаточно высокими показателями статической прочности разрушаются при малых ударных нагрузках, например, сталь с крупнозернистой структурой и чугун.

Ударные испытания на изгиб проводят над образцами стандартной формы на приборах, называемых маятниковыми копрами.

Сопротивление удару называют ударной вязкостью и определяют в килограммометрах на квадратный сантиметр.

Рис.24. Прибор ПМТ-3 для испытания на микротвердость

Ударная вязкость а н вычисляется по формуле

кГ м см 2 ,

где А н - работа удара, затраченная на излом образца,кГ м;

F - площадь поперечного сечения образца в месте надреза,см 2 .

Испытания на усталость . Многие детали машин (шатуны двигателей, коленчатые валы и др.) в процессе работы подвергаются нагрузкам, изменяющимся по величине и направлению. При таких повторно-переменных напряжениях металл постепенно из вязкого состояния переходит в хрупкое (устает). Хрупкое состояние объясняется появлением микротрещин, которые постепенно расширяются и ослабляют металл. В результате этого разрушение наступает при напряжениях меньших, чем предел прочности.

Микротрещины появляются и развиваются с поверхности преимущественно в сечениях с резкими изломами линии контура (например, при наличии шпоночных канавок, отверстий и др.).

Испытания на усталость (выносливость ) производят на различных машинах. Наиболее распространены машины для испытания:

    изгибом при вращении;

    при растяжении-сжатии;

    при кручении.

Для металлов, работающих в сложных условиях, испытательные машины снабжаются установками и приспособлениями, обеспечивающими испытания при повышенных и пониженных температурах, при коррозии и в других специальных условиях.

Рис.25. Испытание на выдавливание

Технологические испытания (пробы ). Они определяют возможность производить те или иные технологические операции с данным металлом.

Испытание на выдавливание служит для определения способности тонкого листового металла к холодной штамповке и вытяжке. Испытание состоит в выдавливании лунки округлой головкой 1 (рис.25 ) до появления первой трещины в пластинке 2, зажатой в кольцевой поверхности.

Глубина выдавленной лунки при появлении первой трещины и является количественной мерой пробы.

Испытание на перегиб определяет способность металла выдерживать повторные перегибы и применяется для оценки качества листового материала толщиной до 5мм , а также проволоки и прутков.

Испытание на осадку определяет способность холодного металла принимать заданную форму при сжатии. Образец-цилиндр, высота которого равна двум диаметрам, считается выдержавшим пробу, если при осадке до заданной высоты на нем не появляются трещины, надрывы и излом.

Испытание на свариваемость. Два бруска испытуемого металла сваривают и испытывают на загиб или на растяжение, после чего сравнивают результаты с теми, которые соответствуют цельному (несваренному) образцу из того же металла. При хорошей свариваемости сопротивление разрыву сварного шва должно соответствовать не менее 80% от предела прочности цельного бруска.

Методы физико-химического анализа.

Макроанализ. Для макроанализа приготовляют образец-шлиф, или излом, по которому выявляют макроструктуру-строение металла и сплава, видимое невооруженным глазом или при малом увеличении до х 5 раз.

Поготовка шлифа состоит в выравнивании и шлифовании поверхности на шлифовальном машине. Затем, шлиф травят реактивами, которые растворяют или окрашивают разные по составу или ориентации части на шлифе.

С помощью макроанализа можно обнаружить усадочные раковины и рыхлости, пустоты, трещины, неметаллические включения (шлак, графит в сером чугуне и т.д.), наличие и характер расположения некоторых вредных примесей, например серы.

Микроанализ . Шлиф для микроанализа приготовляют также, как и для макроанализа, однако после шлифования его полируют до зеркального блеска.

По шлифу с помощью металлографического микроскопа выявляют микроструктуру: наличие, количество и форму тех или иных структурных составляющих, загрязненность посторонними включениями. Наличие и размеры пор определяют по нетравленным шлифам; для выявления основной структуры шлиф подвергают травлению. Так как металлы непрозрачны, шлифы из них можно изучать только в отраженном свете с помощью металлографического микроскопа.

На рис.26 приведена схема, поясняющая видимость границ зерен протравленного шлифа однофазного металла. Под действием реактивов при травлении металл по границам зерен растворяется сильнее, вследствие чего там образуются углубления-микробородки. Лучи света в них рассеиваются, поэтому границы зерен под микроскопом темнее; лучи от плоской поверхности зерен отражаются и каждое зерно на шлифе кажется светлым, при этом часто наблюдается различная окраска зерен, что объясняется неодинаковой растворимостью вследствие анизотропности.

Рис.26. Схема отражения лучей протравленным шлифом

однофазного металла

Наряду с обычным световым микроскопом широко применяют электронный микроскоп, в котором вместо световых лучей используются электронные: эти лучи испускает раскаленная вольфрамовая спираль. Электронный микроскоп обеспечивает электронно-оптическое увеличение до десятков тысяч раз.

Рентгеноструктурный анализ дает возможность установить типы кристаллических решеток металлов и сплавов, а также их параметры. Определение структуры металлов, размещение атомов в кристаллической решетке и измерение расстояния между ними основано на дифракции (отражении) рентгеновских лучей рядами атомов в кристалле, так как длина волн этих лучей соизмерима с межатомными расстояниями в кристаллах. Зная длину волны ренгеновских лучей, можно вычислить расстояние между атомами в кристалле и построить модель расположения атомов.

Ренгенографический анализ (просвечивание) основан на проникновении рентгеновских лучей сквозь тела, непрозрачные для видимого света. Проходя сквозь металлы, ренгеновские лучи частично поглащаются, причем сплошным металлом лучи сильнее поглащаются, чем в тех частях, где находятся газовые и шлаковые включения или трещины. Величину, форму и род этих пороков можно наблюдать на светящемся экране, установленном по ходу лучей за исследуемой деталью. Так как рентгеновские лучи действуют на фотографическую эмульсию подобно световым, то светящийся экран можно заменить кассетой с фотопленкой и получить снимок объекта.

Таким образом, ренгеновским просвечиванием можно обнаружить внутри детали даже микроскопические дефекты.

Термический анализ сводится к выявлению критических точек при нагревании и охлаждении металлов и сплавов и сопровождается построением кривых в координатах «температура - время».

Если в металле не происходит никаких фазовых превращений, кривая охлаждения (нагревания) будет плавной без перегибов и уступов; если же при охлаждении (или нагревании) металла в нем происходят фазовые превращения, которые сопровождаются выделением (при нагревании - поглощением) тепла, на кривой появятся горизонтальные участки или изломы (т.е. изменения направления кривой). Эти изломы и горизонтальные участки позволяют определять температуры превращений.

Дилатометрический анализ (дилатометрия - от лат. расширять) основан на измерении изменений объема, происходящих в металле или сплаве при фазовых превращениях, и применяется для определения критических точек в твердых образцах. Дилатометрический анализ проводят на приборах-дилатометрах.

Дефектоскопия. Магнитная дефектоскопия применяется для выявления дефектов в деталях, подверженных высоким переменным напряжениям. Такие дефекты, как трещины, волосовины, пузыри, неметаллические включения и т.п., в условиях переменной нагрузки становятся очень опасными, так как понижают динамическую прочность деталей.

Магнитное испытание слагается из трех основных операций: намагничивания изделий, покрытия их ферромагнитным порошком, наружного осмотра и размагничивания изделий.

У намагниченных изделий с пороками магнитные силовые линии, стремясь обогнуть места пороков (ввиду их пониженной магнитной проницаемости), выходят за пределы поверхности изделия и затем входят в него, образуя неоднородное магнитное поле. Поэтому при покрытии изделий магнитным порошком частицы последнего располагаются над пороком, образуя резко очерченные рисунки (рис.27 ). По характеру этих рисунков судят о величине и форме пороков металла.

Ультразвуковая дефектоскопия позволяет испытывать любые металлы (а не только ферромагнитные) и выявлять пороки в толще металла на значительной глубине, которые не обнаруживаются магнитным методом.

Для исследования металла применяют ультразвуковые колебания с частотой от 2 до 10 млн. гц. При такой частоте колебания распространяются в металле, подобно лучам, почти не рассеиваясь по сторонам: ими можно «просвечивать» металлы на глубину свыше 1м .

Рис.27. Схема расположения магнитных силовых линий на

детали с пороком

Ультразвук отражается на поверхности раздела разнопордных сред. Поэтому, рапространяясь в металле, ультразвук не проходит через трещины, раковины, неметаллические включения, образуя, таким образом, акустическую тень (рис.28 ). Здесь,а -зона акустической тени.

Для излучения и приема ультразвука используются соответственно пьезоэлектрические излучатели и приемники.

Применение радиоактивных изотопов (меченных атомов) .В металлургии и металловедении радиоактивные изотопы применяют для разных целей. Например, в шлак вводят радиоактивные изотопы фосфора, серы, марганца и др. и изучают скорость перехода этих элементов в металл и скорость восстановления их равновесного распределения между металлом и шлаком в металлургических плавках при изменении температуры или состава шлака. Введение радиоактивного углерода в железо при цементации позволяет изучать скорость диффузии и распределение углерода в нем.

Рис.28. Схема ультразвукового исследования детали

Для выявления распределения олова в никеле в жидкий сплав добавляют радиактивное олово. Затвердевший сплав кладут на кассету с фотопластинкой и после соответствующей выдержки пластинку проявляют.

На рис.29 приведена микрорадиоавтография такого сплава, из которой (по распределению потемнений) видно, что радиактивное, а с ним и обычное олово окаймляет зерна никеля.

Рис.29. Микрорадиоавтография сплава никеля с оловом

Радиоактивные изотопы помогают следить за износом огнеупорной кладки в доменных печах или деталей машин.