Что такое квадратичная функция. Квадратичная функция и ее график. Iii случай, появляется «с»

Функция вида , где называется квадратичной функцией .

График квадратичной функции – парабола .


Рассмотрим случаи:

I СЛУЧАЙ, КЛАССИЧЕСКАЯ ПАРАБОЛА

То есть , ,

Для построения заполняем таблицу, подставляя значения x в формулу:


Отмечаем точки (0;0); (1;1); (-1;1) и т.д. на координатной плоскости (чем с меньшим шагом мы берем значения х (в данном случае шаг 1), и чем больше берем значений х, тем плавнее будет кривая), получаем параболу:


Нетрудно заметить, что если мы возьмем случай , , , то есть , то мы получим параболу, симметричную относительно оси (ох). Убедиться в этом несложно, заполнив аналогичную таблицу:


II СЛУЧАЙ, «a» ОТЛИЧНО ОТ ЕДИНИЦЫ

Что же будет, если мы будем брать , , ? Как изменится поведение параболы? При title="Rendered by QuickLaTeX.com" height="20" width="55" style="vertical-align: -5px;"> парабола изменит форму, она “похудеет” по сравнению с параболой (не верите – заполните соответствующую таблицу – и убедитесь сами):


На первой картинке (см. выше) хорошо видно, что точки из таблицы для параболы (1;1), (-1;1) трансформировались в точки (1;4), (1;-4), то есть при тех же значениях ордината каждой точки умножилась на 4. Это произойдет со всеми ключевыми точками исходной таблицы. Аналогично рассуждаем в случаях картинок 2 и 3.

А при парабола «станет шире» параболы :


Давайте подитожим:

1) Знак коэффициента отвечает за направление ветвей. При title="Rendered by QuickLaTeX.com" height="14" width="47" style="vertical-align: 0px;"> ветви направлены вверх, при - вниз.

2) Абсолютная величина коэффициента (модуля) отвечает за “расширение”, “сжатие” параболы. Чем больше , тем у’же парабола, чем меньше |a|, тем шире парабола.

III СЛУЧАЙ, ПОЯВЛЯЕТСЯ «С»

Теперь давайте введем в игру (то есть рассматриваем случай, когда ), будем рассматривать параболы вида . Нетрудно догадаться (вы всегда можете обратиться к таблице), что будет происходить смещение параболы вдоль оси вверх или вниз в зависимости от знака :



IV СЛУЧАЙ, ПОЯВЛЯЕТСЯ «b»

Когда же парабола “оторвется” от оси и будет, наконец, “гулять” по всей координатной плоскости? Когда перестанет быть равным .

Здесь для построения параболы нам понадобится формула для вычисления вершины: , .

Так вот в этой точке (как в точке (0;0) новой системы координат) мы будем строить параболу , что уже нам по силам. Если имеем дело со случаем , то от вершины откладываем один единичный отрезок вправо, один вверх, – полученная точка – наша (аналогично шаг влево, шаг вверх – наша точка); если имеем дело с , например, то от вершины откладываем один единичный отрезок вправо, два – вверх и т.д.

Например, вершина параболы :

Теперь главное уяснить, что в этой вершине мы будем строить параболу по шаблону параболы , ведь в нашем случае.

При построении параболы после нахождения координат вершины очень удобно учитывать следующие моменты:

1) парабола обязательно пройдет через точку . Действительно, подставив в формулу x=0, получим, что . То есть ордината точки пересечения параболы с осью (оу), это . В нашем примере (выше), парабола пересекает ось ординат в точке , так как .

2) осью симметрии параболы является прямая , поэтому все точки параболы будут симметричны относительно нее. В нашем примере, мы сразу берем точку (0; -2) и строим ей симметричную относительно оси симметрии параболы, получим точку (4; -2), через которую будет проходить парабола.

3) Приравнивая к , мы узнаем точки пересечения параболы с осью (ох). Для этого решаем уравнение . В зависимости от дискриминанта, будем получать одну (, ), две ( title="Rendered by QuickLaTeX.com" height="14" width="54" style="vertical-align: 0px;">, ) или нИсколько () точек пересечения с осью (ох) . В предыдущем примере у нас корень из дискриминанта – не целое число, при построении нам особо нет смысла находить корни, но мы видим четко, что две точки пересечения с осью (ох) у нас будут (так как title="Rendered by QuickLaTeX.com" height="14" width="54" style="vertical-align: 0px;">), хотя, в общем, это видно и без дискриминанта.

Итак, давайте выработаем

Алгоритм для построения параболы, если она задана в виде

1) определяем направление ветвей (а>0 – вверх, a<0 – вниз)

2) находим координаты вершины параболы по формуле , .

3) находим точку пересечения параболы с осью (оу) по свободному члену , строим точку, симметричную данной относительно оси симметрии параболы (надо заметить, бывает, что эту точку невыгодно отмечать, например, потому, что значение велико… пропускаем этот пункт…)

4) В найденной точке – вершине параболы (как в точке (0;0) новой системы координат) строим параболу . Если title="Rendered by QuickLaTeX.com" height="20" width="55" style="vertical-align: -5px;">, то парабола становится у’же по сравнению с , если , то парабола расширяется по сравнению с

5) Находим точки пересечения параболы с осью (оу) (если они еще сами “не всплыли”), решая уравнение

Пример 1


Пример 2


Замечание 1. Если же парабола изначально нам задана в виде , где – некоторые числа (например, ), то построить ее будет еще легче, потому что нам уже заданы координаты вершины . Почему?

Возьмем квадратный трехчлен и выделим в нем полный квадрат: Посмотрите, вот мы и получили, что , . Мы с вами ранее называли вершину параболы , то есть теперь , .

Например, . Отмечаем на плоскости вершину параболы , понимаем, что ветви направлены вниз, парабола расширена (относительно ). То есть выполняем пункты 1; 3; 4; 5 из алгоритма построения параболы (см. выше).

Замечание 2. Если парабола задана в виде, подобном этому (то есть представлен в виде произведения двух линейных множителей), то нам сразу видны точки пересечения параболы с осью (ох). В данном случае – (0;0) и (4;0). В остальном же действуем согласно алгоритму, раскрыв скобки.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Если Вы хотите участвовать в большой жизни, то наполняйте свою голову математикой, пока есть к тому возможность. Она окажет Вам потом огромную помощь во всей вашей работе

М.И. Калинин

Одной из главных функций школьной математики, для которой построена полная теория и доказаны все свойства, является квадратичная функция . Учащихся должны четко понимать и знать все эти свойства. При этом задач на квадратичную функцию существует великое множество – от очень простых, которые вытекают непосредственно из теории и формул, до самых сложных, решение которых требует анализа и глубокого понимания всех свойств функции.

При решении задач на квадратичную функцию большое практическое значение имеет наличие соответствия между алгебраическим описание задачи и ее геометрической интерпретацией – изображением на координатной плоскости эскиза графика функции. Именно благодаря этой особенности у вас всегда есть возможность проверить правильность и непротиворечивость своих теоретических рассуждений.

Рассмотрим несколько задач по теме «Квадратичная функция» и остановимся на подробном их решении.

Задача 1.

Найти сумму целых значений числа p, при которых вершина параболы y = 1/3x 2 – 2px + 12p расположена выше оси Ox.

Решение.

Ветви параболы направлены вверх (a = 1/3 > 0). Так как вершина параболы лежит выше оси Ox, то парабола не пересекает ось абсцисс (рис. 1). Значит, функция

y = 1/3x 2 – 2px + 12p не имеет нулей,

а уравнение

1/3x 2 – 2px + 12p = 0 не имеет корней.

Это возможно, если дискриминант последнего уравнения окажется отрицательным.

Вычислим его:

D/4 = p 2 – 1/3·12p = p 2 – 4p;

p 2 – 4p < 0;

p(p – 4) < 0;

p принадлежит интервалу (0; 4).

Сумма целых значений числа p из промежутка (0; 4): 1 + 2 + 3 = 6.

Ответ: 6.

Заметим, что для ответа на вопрос задачи можно было решить неравенство

y в > 0 или (4ac – b 2) / 4a > 0.

Задача 2.

Найти количество целых значений числа a, при которых абсцисса и ордината вершины параболы y = (x – 9a) 2 + a 2 + 7a + 6 отрицательны.

Решение.

Если квадратичная функция имеет вид

y = a(x – n) 2 + m, то точка с координатами (m; n) является вершиной параболы.

В нашем случае

х в = 9a; y в = a 2 + 7a + 6.

Так как и абсцисса, и ордината вершины параболы должны быть отрицательны, то составим систему неравенств:

{9a < 0,
{a 2 + 7a + 6 < 0;

Решим полученную систему:

{a < 0,
{(a+ 1)(a + 6) < 0;

Изобразим решение неравенств на координатных прямых и дадим окончательный ответ:

a принадлежит промежутку (-6; -1).

Целые значения числа a: -5; -4; -3; -2. Их количество: 4.

Ответ: 4.

Задача 3.

Найти наибольшее целое значение числа m, при котором квадратичная функция
y = -2x 2 + 8x + 2m принимает только отрицательные значения.

Решение.

Ветви параболы направлены вниз (a = -2 < 0). Данная функция будет принимать только отрицательные значения, если ее график не будет иметь общих точек с осью абсцисс, т.е. уравнение -2x 2 + 8x + 2m = 0 не будет иметь корней. Это возможно, если дискриминант последнего уравнения будет отрицательным.

2x 2 + 8x + 2m = 0.

Разделим коэффициенты уравнения на -2, получим:

x 2 – 4x – m = 0;

D/4 = 2 2 – 1 · 1 · (-m) = 4 + m;

Наибольшее целое значение числа m: -5.

Ответ: -5.

Для ответа на вопрос задачи можно было решить неравенство y в < 0 или

(4ac – b 2) / 4a < 0.

Задача 4.

Найти наименьшее значение квадратичной функции y = ax 2 – (a + 6)x + 9, если известно, что прямая x = 2 является осью симметрии ее графика.

Решение.

1) Так как прямая x = 2 является осью симметрии данного графика, то x в = 2. Воспользуемся формулой

x в = -b / 2a, тогда x в = (a + 6) / 2a. Но x в = 2.

Составим уравнение:

(a + 6) / 2a = 2;

Тогда функция принимает вид

y = 2x 2 – (2 + 6)x + 9;

y = 2x 2 – 8x + 9.

2) Ветви параболы

Наименьшее значение данной функции равно ординате вершины параболы (рис. 2) , которую легко найти, воспользовавшись формулой

y в = (4ac – b 2) / 4a.

y в = (4 · 2 · 9 – 8 2) /4 · 2 = (72 – 64) / 8 = 8/8 = 1.

Наименьшее значение рассматриваемой функции равно 1.

Ответ: 1.

Задача 5.

Найти наименьшее целое значение числа a, при котором множества значений функции y = x 2 – 2x + a и y = -x 2 + 4x – a не пересекаются.

Решение.

Найдем множество значений каждой функции.

I способ.

y 1 = x 2 – 2x + a.

Применим формулу

y в = (4ac – b 2) / 4a.

y в = (4 · 1 · a – 2 2) /4 · 1 = (4a – 4) / 4 = 4(a – 1) / 4 = a – 1.

Так как ветви параболы направлены вверх, то

E(y) = .

E(y 2) = (-∞; 4 – a].

Изобразим полученные множества на координатных прямых (рис. 3) .

Полученные множества не будут пересекаться, если точка с координатой 4 – a будет располагаться левее точки с координатой a – 1, т.е.

4 – a < a – 1;

Наименьшее целое значение числа a: 3.

Ответ: 3.

Задачи на расположение корней квадратичной функции, задачи с параметрами и задачи, сводящиеся к квадратичным функциям, очень популярны на ЕГЭ. Поэтому при подготовке к экзаменам стоит обратить на них пристальное внимание.

Остались вопросы? Не знаете, как построить график квадратичной функции?
Чтобы получить помощь репетитора – зарегистрируйтесь .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

- — [] квадратичная функция Функция вида y= ax2 + bx + c (a ? 0). График К.ф. — парабола, вершина которой имеет координаты [ b/ 2a, (b2 4ac) /4a], при а>0 ветви параболы… …

КВАДРАТИЧНАЯ ФУНКЦИЯ, математическая ФУНКЦИЯ, значение которой зависит от квадрата независимой переменной, х, и задается, соответственно, квадратичным МНОГОЧЛЕНОМ, например: f(x) = 4х2 + 17 или f(x) = х2 + 3х + 2. см. также КВАДРАТНОЕ УРАВНЕНИЕ … Научно-технический энциклопедический словарь

Квадратичная функция - Квадратичная функция — функция вида y= ax2 + bx + c (a ≠ 0). График К.ф. — парабола, вершина которой имеет координаты [ b/ 2a, (b2 4ac) /4a], при а> 0 ветви параболы направлены вверх, при a< 0 –вниз… …

- (quadratic) Функция, имеющая следующий вид: у=ах2+bх+с, где a≠0 и высшая степень х – квадрат. Квадратное уравнение у=ах2 +bх+с=0 может быть также решено с использованием следующей формулы: х= –b+ √ (b2–4ac) /2а. Эти корни являются действительными … Экономический словарь

Аффинно квадратичной функцией на аффинном пространстве S называется всякая функция Q: S→K, имеющая в векторизованной форме вид Q(x)=q(x)+l(x)+c, где q квадратичная функция, l линейная функция, с константа. Содержание 1 Перенос начала отсчета 2… … Википедия

Аффинно квадратичной функцией на аффинном пространстве называется всякая функция, имеющая в векторизованной форме вид, где симметричная матрица, линейная функция, константа. Содержание … Википедия

Функция на векторном пространстве, задаваемая однородным многочленом второй степени от координат вектора. Содержание 1 Определение 2 Связанные определения … Википедия

- – функция, которая в теории статистических решений характеризует потери при неправильном принятии решений на основе наблюдаемых данных. Если решается задача оценки параметра сигнала на фоне помех, то функция потерь является мерой расхождения… … Википедия

целевая функция - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] целевая функция В экстремальных задачах — функция, минимум или максимум которой требуется найти. Это… … Справочник технического переводчика

Целевая функция - в экстремальных задачах функция, минимум или максимум которой требуется найти. Это ключевое понятие оптимального программирования. Найдя экстремум Ц.ф. и, следовательно, определив значения управляемых переменных, которые к нему… … Экономико-математический словарь

Книги

  • Комплект таблиц. Математика. Графики функций (10 таблиц) , . Учебный альбом из 10 листов. Линейная функция. Графическое и аналитическое задание функций. Квадратичная функция. Преобразование графика квадратичной функции. Функция y=sinx. Функция y=cosx.…
  • Важнейшая функция школьной математики - Квадратичная в задачах и решениях , Петров Н.. Квадратичная функция является основной функцией школьного курса математики. Это неудивительно. С одной стороны - простота данной функции, а с другой - глубокий смысл. Многие задачи школьного…